829 research outputs found

    STRS Radio Service Software for NASA's SCaN Testbed

    Get PDF
    NASAs Space Communication and Navigation(SCaN) Testbed was launched to the International Space Station in 2012. The objective is to promote new software defined radio technologies and associated software application reuse, enabled by this first flight of NASAs Space Telecommunications Radio System(STRS) architecture standard. Pre-launch testing with the testbeds software defined radios was performed as part of system integration. Radio services for the JPL SDR were developed during system integration to allow the waveform application to operate properly in the space environment, especially considering thermal effects. These services include receiver gain control, frequency offset, IQ modulator balance, and transmit level control. Development, integration, and environmental testing of the radio services will be described. The added software allows the waveform application to operate properly in the space environment, and can be reused by future experimenters testing different waveform applications. Integrating such services with the platform provided STRS operating environment will attract more users, and these services are candidates for interface standardization via STRS

    Tempo and intensity of pre-task music modulate neural activity during reactive task performance

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2013 The Authors.Research has shown that not only do young athletes purposively use music to manage their emotional state (Bishop, Karageorghis, & Loizou, 2007), but also that brief periods of music listening may facilitate their subsequent reactive performance (Bishop, Karageorghis, & Kinrade, 2009). We report an fMRI study in which young athletes lay in an MRI scanner and listened to a popular music track immediately prior to performance of a three-choice reaction time task; intensity and tempo were modified such that six excerpts (2 intensities × 3 tempi) were created. Neural activity was measured throughout. Faster tempi and higher intensity collectively yielded activation in structures integral to visual perception (inferior temporal gyrus), allocation of attention (cuneus, inferior parietal lobule, supramarginal gyrus), and motor control (putamen), during reactive performance. The implications for music listening as a pre-competition strategy in sport are discussed

    Anxiety, anticipation and contextual information: a test of attentional control theory

    Get PDF
    We tested the assumptions of Attentional Control Theory (ACT) by examining the impact of anxiety on anticipation using a dynamic, time-constrained task. Moreover, we examined the involvement of high- and low-level cognitive processes in anticipation and how their importance may interact with anxiety. Skilled and less-skilled tennis players anticipated the shots of opponents under low- and high-anxiety conditions. Participants viewed three types of video stimuli, each depicting different levels of contextual information. Performance effectiveness (response accuracy) and processing efficiency (response accuracy divided by corresponding mental effort) were measured. Skilled players recorded higher levels of response accuracy and processing efficiency compared to less-skilled counterparts. Processing efficiency significantly decreased under high- compared to low-anxiety conditions. No difference in response accuracy was observed. When reviewing directional errors, anxiety was most detrimental to performance in the condition conveying only contextual information, suggesting that anxiety may have a greater impact on high-level (top-down) cognitive processes, potentially due to a shift in attentional control. Our findings provide partial support for ACT; anxiety elicited greater decrements in processing efficiency than performance effectiveness, possibly due to predominance of the stimulus-driven attentional system

    Multiple sulfur isotope constraints on the sulfur cycle in the modern ocean

    Get PDF
    We present 28 multiple sulfur isotope measurements of seawater sulfate (δ34SSO4δ34SSO4 and Δ33SSO4Δ33SSO4) from the modern ocean over a range of water depths and sites along the eastern margin of the Pacific Ocean. The average measured δ34SSO4δ34SSO4 is 21.24‰ (±0.88‰,2σ±0.88‰,2σ) with a calculated Δ33SSO4Δ33SSO4 of +0.050‰+0.050‰ (±0.014‰,2σ±0.014‰,2σ). With these values, we use a box-model to place constraints on the gross fraction of pyrite burial in modern sediments. This model presents an improvement on previous estimates of the global pyrite burial flux because it does not rely on the assumed value of δ34Spyriteδ34Spyrite, which is poorly constrained, but instead uses new information about the relationship between δ34Sδ34S and δ33Sδ33S in global marine sulfate. Our calculations indicate that the pyrite burial flux from the modern ocean is between 10% and 45% of the total sulfur lost from the oceans, with a more probable range between 20% and 35%

    Psychophysiological effects of synchronous versus asynchronous music during cycling

    Get PDF
    "This is a non-final version of an article published in final form in (https://journals.lww.com/acsm-msse/pages/articleviewer.aspx?year=2014&issue=02000&article=00024&type=abstract )"Purpose: Synchronizing movement to a musical beat may reduce the metabolic cost of exercise, but findings to date have been equivocal. Our aim was to examine the degree to which the synchronous application of music moderates the metabolic demands of a cycle ergometer task. Methods: Twenty-three recreationally active men made two laboratory visits. During the first visit, participants completed a maximal incremental ramp test on a cycle ergometer. At the second visit, they completed four randomized 6-min cycling bouts at 90% of ventilatory threshold (control, metronome, synchronous music, and asynchronous music). Main outcome variables were oxygen uptake, HR, ratings of dyspnea and limb discomfort, affective valence, and arousal. Results: No significant differences were evident for oxygen uptake. HR was lower under the metronome condition (122 T 15 bpm) compared to asynchronous music (124 T 17 bpm) and control (125 T 16 bpm). Limb discomfort was lower while listening to the metronome (2.5 T 1.2) and synchronous music (2.3 T 1.1) compared to control (3.0 T 1.5). Both music conditions, synchronous (1.9 T 1.2) and asynchronous (2.1 T 1.3), elicited more positive affective valence compared to metronome (1.2 T 1.4) and control (1.2 T 1.2), while arousal was higher with synchronous music (3.4 T 0.9) compared to metronome (2.8 T 1.0) and control (2.8 T 0.9). Conclusions: Synchronizing movement to a rhythmic stimulus does not reduce metabolic cost but may lower limb discomfort. Moreover, synchronous music has a stronger effect on limb discomfort and arousal when compared to asynchronous music

    First-Order Melting of a Moving Vortex Lattice: Effects of Disorder

    Full text link
    We study the melting of a moving vortex lattice through numerical simulations with the current driven 3D XY model with disorder. We find that there is a first-order phase transition even for large disorder when the corresponding equilibrium transition is continuous. The low temperature phase is an anisotropic moving glass.Comment: Important changes from original version. Finite size analysis of results has been added. Figure 2 has been changed. There is a new additional Figure. To be published in Physical Review Letter

    Pluripotent Stem Cells Reveal Erythroid-specific Activities Of The Gata1 N-terminus

    Get PDF
    Germline GATA1 mutations that result in the production of an amino-truncated protein termed GATA1s (where s indicates short) cause congenital hypoplastic anemia. In patients with trisomy 21, similar somatic GATA1s-producing mutations promote transient myeloproliferative disease and acute megakaryoblastic leukemia. Here, we demonstrate that induced pluripotent stem cells (iPSCs) from patients with GATA1-truncating mutations exhibit impaired erythroid potential, but enhanced megakaryopoiesis and myelopoiesis, recapitulating the major phenotypes of the associated diseases. Similarly, in developmentally arrested GATA1-deficient murine megakaryocyte-erythroid progenitors derived from murine embryonic stem cells (ESCs), expression of GATA1s promoted megakaryopoiesis, but not erythropoiesis. Transcriptome analysis revealed a selective deficiency in the ability of GATA1s to activate erythroid-specific genes within populations of hematopoietic progenitors. Although its DNA-binding domain was intact, chromatin immunoprecipitation studies showed that GATA1s binding at specific erythroid regulatory regions was impaired, while binding at many nonerythroid sites, including megakaryocytic and myeloid target genes, was normal. Together, these observations indicate that lineage-specific GATA1 cofactor associations are essential for normal chromatin occupancy and provide mechanistic insights into how GATA1s mutations cause human disease. More broadly, our studies underscore the value of ESCs and iPSCs to recapitulate and study disease phenotypes.12539931005NIH [K08 HL093290, R01 DK100854, RC2 HL10166, P30 DK090969, R01 DK065806]American Society of Hematology Scholar Awar

    Interactive effects of video, priming, and music on emotions and the needs underlying intrinsic motivation

    Get PDF
    Objectives: Emotions can enhance motivation towards a particular goal (Brehm, 1999), while activation of human motivation does not necessarily involve conscious processes (Bargh, 1990). The main purpose of the present study was to explore the impact of video, priming, and music on a range of emotion- and motivation-related variables, while the secondary purpose was to conduct a cross-cultural comparison. Design: A randomized controlled design was employed to address the interactive effects of video, priming, and music on emotions and motivation with reference to the circumplex theory of emotion. Methods: Participants comprised a convenience sample of 210 volunteers (English, n = 128; M = 20.0, SD = 4.7 years; Male, n = 65; Female, n = 63; Greek, n = 82, M = 23.3, SD = 2.4 years; Male, n = 59; Female, n = 23). A control condition and five experimental conditions were presented to participants in a counterbalanced order. The needs underlying intrinsic motivation were accessed using the Activity Feeling-state Scales (AFS; Reeve & Sickenius, 1994), while emotional states were assessed using adjectives from the Circumplex Model of Affect (Russell, 1980). Results: Findings showed that music had positive effects on emotional states and the psychological needs underlying intrinsic motivation. They also highlighted the positive effects of priming as a psychological intervention – particularly when presented through video and coupled with music. Conclusions: The study presents the state-of-the-art for the use of video, priming, and music in sport and includes recommendations for sport psychology practitioners and researchers

    Stem cell membrane engineering for cell rolling using peptide conjugation and tuning of cell–selectin interaction kinetics

    Get PDF
    Dynamic cell–microenvironment interactions regulate many biological events and play a critical role in tissue regeneration. Cell homing to targeted tissues requires well balanced interactions between cells and adhesion molecules on blood vessel walls. However, many stem cells lack affinity with adhesion molecules. It is challenging and clinically important to engineer these stem cells to modulate their dynamic interactions with blood vessels. In this study, a new chemical strategy was developed to engineer cell–microenvironment interactions. This method allowed the conjugation of peptides onto stem cell membranes without affecting cell viability, proliferation or multipotency. Mesenchymal stem cells (MSCs) engineered in this manner showed controlled firm adhesion and rolling on E-selectin under physiological shear stresses. For the first time, these biomechanical responses were achieved by tuning the binding kinetics of the peptide-selectin interaction. Rolling of engineered MSCs on E-selectin is mediated by a Ca[superscript 2+] independent interaction, a mechanism that differs from the Ca[superscript 2+] dependent physiological process. This further illustrates the ability of this approach to manipulate cell–microenvironment interactions, in particular for the application of delivering cells to targeted tissues. It also provides a new platform to engineer cells with multiple functionalities.National Heart, Lung, and Blood Institute (Programs of Excellence in Nanotechnology Award Contract HHSN268201000045C)National Institutes of Health (U.S.) (Grant 2-P30-CA14051)Armed Forces Institute of Regenerative Medicine (Award W81XWH-08-2-0034
    • …
    corecore